Crystal Chemistry, Magnetic, and Electrical Properties of Hexagonal Plutonium Oxide Chalcogenides: Pu_2O_2X , X = O, S, Se

J. M. COSTANTINI AND D. DAMIEN

DECPu-SEFCAE, CEN, BP 6, 92260 Fontenay-aux-Roses, France

C. H. DE NOVION

DECPu-SESI, CEN, BP 6, 92260 Fontenay-aux-Roses, France

A. BLAISE

DRF/SPhS, CEN-G, 85-X, 38041 Grenoble Cedex, France

AND A. COUSSON, H. ABAZLI, M. PAGÈS

Institut du Radium, 11 Rue Pierre et Marie Curie—75321 Paris Cedex 05, France

Received April 27, 1982; in revised form August 6, 1982

A study was made of the influence of the chalcogen X on the magnetic and electrical properties of $Pu_2O_2X (X = O, S, Se)$ compounds and on bonding in these hexagonal compounds, isostructural with the corresponding rare-earth compounds. The comparison of the cell volumes of Nd_2O_2X and Pu_2O_2X compounds showed that the Pu^{3+} crystal radius decreased from β - Pu_2O_3 to Pu_2O_2Se as "5f delocalization" and 5f-p overlap increased. These plutonium compounds were all found to be antiferromagnetic. This was caused by superexchange coupling interactions via p orbitals of the oxygen and chalcogen ions. The Néel temperature increased from β - Pu_2O_3 (26 K) to Pu_2O_2S (28 K) then to Pu_2O_2Se (34 K) showing that 5f-p covalency was enhanced as the chalcogen electronegativity decreased and the p radial extent increased. The hexagonal β - Pu_2O_3 was found to be an insulator while both other compounds were semiconductors with gaps around 0.5 eV. These gaps were interpreted as the energy separation between the 6d-7s conduction band and the np band of the chalcogen X with some overlap of the occupied 5f states and the np band. A simple electron band scheme of these compounds is proposed on such assumptions.

Nous avons étudié l'influence de l'élément chalcogène X sur les propriétés magnétiques et électriques des oxychalcogénures Pu_2O_2X (X = O, S, Se) ainsi que sur la liaison chimique dans ces composés hexagonaux, isostructuraux des composés similaires de terres rares. En comparant les volumes de maille de Pu_2O_2X et de Nd_2O_2X , on montre que le rayon cristallin de Pu décroit de Pu_2O_3 à Pu_2O_2Se avec l'augmentation des recouvrements 5f-p et de la "délocalisation" des électrons 5f. Ces composés sont tous antiferromagnétiques, la température de Néel augmentant de Pu_2O_3 (26 K) à Pu_2O_2Se (34 K). Cela montre que, lorsque l'électronégativité de X diminue, les interactions de superéchange à travers O^{2-} et X^{2-} se renforcent ainsi que la covalence 5f-p. Pu_2O_3 hexagonal est isolant alors que les deux autres composés sont semiconducteurs avec un gap voisin de 0,5 eV. Nous avons considéré ce gap comme la différence d'énergie entre la bande de conduction 7s-6d et la bande np du chalcogène X. Les états 5f occupés sont situés juste au-dessous de la bande np en la recouvrant partiellement. A partir de ces hypothèses nous avons proposé un modèle de bandes simple pour ces composés.

I. Introduction

The 5f electrons in semimetallic compounds are considered to be less "localized" than the 4f electrons, either exhibiting a complex narrow band-like behavior or taking part in the bonding, thereby giving rise to some covalent character. In a recent paper (1) Damien and de Novion stressed that "5f delocalization" depends strongly on two factors:

(1) the actinide-actinide spacing, as evidenced by the Hill plot (2);

(2) the nature of the anionic environment.

In this work our aim was to contribute to a better understanding of the anion environment factor by studying the influence of chalcogen X on bonding in the plutonium oxide chalcogenides Pu_2O_2X . Our choice for these compounds followed three criteria:

(1) Pu-Pu distances are sufficiently large (\geq 3.6 Å) to rule out any direct f-f coupling.

(2) In the Pu_2O_2X compounds, as in the isostructural rare-earth hexagonal compounds (RE)₂O₂X, the metal should be trivalent.

(3) The $(RE)_2O_2X$ compounds have already been studied thoroughly on structural, optical and magnetic standpoints (3, 4), so they should be a good reference for well localized f electrons in this particular crystal symmetry and anion environment.

II. Experimental

 Pu_2O_2S and Pu_2O_2Se were prepared by heating mixtures of stoichiometric amounts of PuO_2 , Pu hydride and appropriate chalcogen according to the reaction

$$PuO_2 + X + PuH_y(2 < y < 3) \rightarrow$$

$$Pu_2O_2X + (y/2)H_2 \qquad X = S, Se.$$

Both reactions were carried out at 800°C in silica tubes sealed under high vacuum. The amount of hydrogen evolved in the reaction, from one gram maximum of hydride, was small enough to prevent any hazard of rupture of the sealed tubes.

 β -Pu₂O₃ was obtained by reacting stoichiometric amounts of Pu hydride with PuO₂ according to the reaction

$$3\operatorname{PuO}_2 + \operatorname{PuH}_y(2 < y < 3) \rightarrow 2\beta - \operatorname{Pu}_2O_3 + (y/2)H_2.$$

This reaction was done at about 1250°C in a tungsten crucible heated by an induction furnace. The hexagonal β phase was then quenched by switching off the hf current. More details on this work are available in (5). These three compounds are black colored. They were X rayed using a 114.6 mm diameter Norelco camera and the CuK α radiation. Film dilatation corrections were performed.

The magnetic susceptibilities of powdered samples were measured with the Faraday method from 4 to 300 K at 6 kG, the samples being encapsulated in ultrapure aluminium containers. Preliminary measurements at varying applied fields were performed at room temperature to check that the sample was free from magnetic impurities (5).

The electrical resistivities were also measured in the same temperature range using the 4-point method on pelletized samples sealed in copper containers. The pellets were sintered at about 1200°C, except β -Pu₂O₃, to avoid any phase transformation in the sesquioxide (5).

III. Results

X-Ray Data

The X-ray powder patterns are indexed in the hexagonal system (see Table I) except two weak extra lines which were at-

COSTANTINI ET AL.

Pu ₂ O ₂ S a = 3.929(1) Å, $c = 6.804(2)$ Å; $z = 0.290$, $z' = 0.640^a$				Pu ₂ O ₂ Se a = 3.962(1) Å, $c = 6.986(1)$ Å; $z = 0.290$, $z' = 0.640^a$					
	20		I		- /	20		I	
hkl	Observed	Calcu- lated ^b	Observed	Calcu- lated ^d	hkl	Observed	Calcu- lated ^b	Observed	Calcu- lated ^d
001	13.04	13.21	vw	3	002	25.52	25.48	vw	8
∫100	36 37	26.38		14)	100	26.04	25.95	vw	3
l 102	20.27	26.39	8	17 ∫	101	28.98	28.98	vs	100
101	29.42	29.54	vs	100	102	36.71	36.70	s	47
102	37.50	37.57	S	35	003	38.63	38.65	vw	10
003	39.92	39.93	w	8	110	45.77	45.79	\$	33
110	46.20	46.39	S	30	103	47.14	47.15	S	14
<i>{</i> 111	48 47	48.39		0.8)	004	52.28	52.37	vw	2
L103	40.42	48.40	2	18 J	112	53.14	53.14	m	7
(200		54.06		2 }	201	55.13	55.11	m	17
{112	53.97	54.06	s	16 }	104	59.25	59.36	m	8
1004		54.08		2)	202	60.03	60.07	m	11
201	55.72	55.86	8	17	113	61.38	61.43	m	16
{202	61.06	61.04	ms	9}	203	67.71	67.84	w	5
104	01.00	61.05	M15	10	114	72.07	72.08	w	6
<i>[</i> 113	62.67	62.71	m	12}	∫210	72 08	72.93	***	0.4)
1203	68.89	69.16	vw	6)	l 105	72.90	73.11	*	6 J
005	69.14	69.17	ms	2	211	74.29	74.39	m	14
{210	73 84	73.80	m	2}	204	78.02	78.07	vw	4
114	15.04	73.82	•11	4J	212	78.67	78.69	w	10
{211	75 33	75.33	\$	15}	∫30 0	84 77	84.75	m	6]
105	10100	75.35	U U	5)	115	01.77	84.92		3)
<i>{</i> 212	79 84	79.85	m	8]	213	85.74	85.74	m	6
204	17.01	79.86		5J	106	88.67	88.70	vw	5
{300	85.61	85.77	vw	5 }	205	91.33	90.71	vw	4
l 00 6	05.01	85.80		<0.1	214	95.47	95.52	vw	5
[301		87.24		(0.2)	303	97.30	97.33	vw	5
{ 213	87.32	87.25	m	8 }	220	102.19	102.20	vw	4
(115		87.26		5)	206	106.31	106.28	vw	4
302	91.51	91.65	w	4	310	100 47	108.20		0.2
(106		91.68		6)	1215	108.46	108.38	w	
205	93.41	93.13	vw	3	(222	100 (0	107.99		2)
214	97.54	97.55	vw	7	311	109.69	109.68	w	8
1220	103.47	103.51	vw	4	225	113.47	115.50	vw	5
(110		103.54		<0.1)	205	122.19	122.11	vw	5
310		109.04			117	121.15	121.15	vw	1
222	109.69	109.04	m	2	216	175.70	117.75	w	10
204		109.03		5	(207	125.00	125.00	w	10 ~0.01)
(200		107.07		5)	224	126.82	126.05	vw	-0.01
215	111 14	111.20		6	401	129 70	120.33	V11/	4) 5
1410	111.14	111.22	111	۲ (109	121.00	121.04	* **	5

TABLE I X-Ray Powder Patterns of Pu_2O_2S and Pu_2O_2Se

Pu ₂ O ₂ \$ a = 3.929(1) Å, $c = 6.804(2)$ Å; $z = 0.290$, $z' = 0.640^a$					Pu ₂ O ₂ Se a = 3.962(1) Å, c = 6.986(1) Å; z = 0.290, $z' = 0.640^a$					
	20		I			20		Ι		
hki	Observed	Calcu- lated ^b	Observed ^c	Calcu- lated ^d	hk!	Observed	Calcu- lated ^b	Observed	Calcu- lated ^d	
312	116.12	116.01	w	6	314	134.60	134.59	w	7	
223	117.80	117.06	w	5	225	145.35	145.11	vw	4	
(313		124.51		7)	∫320	157.00	156.68		0.7]	
305	124.70	124.53	S	5 }	1315		157.11	m	_18 ∫	
l 117		124.55		8)	321	160.35	160.50	s	27	
(400		130.03		0.6)	208	164.12	164.20	m	17	
224	130.69	130.05	m	3 (
216		130.07		13 (
008		130.10		0.1						
(402		138.21		4)						
314	138.62	138.23	ms	10 }						
108		138.29		7)						
∫403	150.90	150.88		6]						
1225	150.89	150.91	111	ا و						
(321		167.38		45)						
315	167.14	167.47	S	27 }						
217		167.57		ر و						

TABLE I—Continued

^{*a*} Atomic position parameters of Ce_2O_2S taken from (10).

^b Calculations done with the computer program POWD (δ).

^c Legend: vw = very weak, m = medium, ms = medium strong, s = strong, vs = very strong.

^d Calculations were done with the computer program TENSIT (23). Intensities were corrected with the appropriate Lorenz polarization factor, but neither absorption coefficient nor temperature factor were taken into account. Space group $P\overline{3}m1$ was assumed as in Ce₂O₂S (see text) (10).

	a (Å)		c (Å)		cla			
	This work	Literature	This work	Literature	This work	Literature	δ (%)	d (Å)
β-Pu ₂ O ₃	3.836 (2)	3.8388 (2) (9)	5.976 (9)	5.9594 (6) (9)	1.56	1.56	0.2	~3.75
Pu ₂ O ₂ S	3.929 (1)	3.927 (3) (10)	6.804 (2)	6.769 (10) (<i>10</i>)	1.73	1.72	0.3	~3.65
	(3.962 (1)		6.986 (1)					
Pu ₂ O ₂ Se ^a	{	3.957		6. 97 7	1.76	1.76	0.7	~3.70
	(3.961 (1)	(11)	6.982 (1)	(11)				

TABLE II

LATTICE PARAMETERS (a, c), δ -COEFFICIENT, AND SHORTEST PU-PU DISTANCE d OF Pu₂O₂X COMPOUNDS

^a 2 preparations.

tributed to PuO₂. Examination of the line intensities suggests that the Pu₂O₂X compounds are isostructural with the rare-earth compounds (RE)₂O₂X of Ce₂O₂S-type structure (6, 10, 24) or A-type (RE)₂O₃ (7). The lattice parameters were calculated with the computer program POWD (8). As can be seen in Table II, they are in rather good agreement with the previous determinations (9-11).

Magnetic Susceptibility Results

The reciprocal molar susceptibilities of the three compounds are plotted against temperature in Fig. 1, the diamagnetic contributions of Pu^{3+} , O^{2-} , and X^{2-} (12) as well as the blank value being substracted from the data. In each compound a slight field dependence of the magnetic susceptibility was observed at room temperature and was attributed to small contents of a ferromagnetic impurity. The reported susceptibility data are subsequently corrected with the aid of the Honda–Owen treatment (13).

The maximum in susceptibility is attributed to antiferromagnetic ordering occuring at 26 K for β -Pu₂O₃, 28 K for Pu₂O₂S, and 34 K for Pu₂O₂Se. For β -Pu₂O₃ McCart *et al.* (14) found a susceptibility maximum at 20 K while Flotow and Tetenbaum observed a λ -type specific heat anomaly at 17.6 K (16). The former authors (14) associated this Néel temperature with the maximum value of d_X/dT .

The higher temperature data, between 100 and 300 K, are analyzed with the Curie-Weiss law. The effective moments per Pu atom (p), the Curie paramagnetic temperatures (θ_p), and the Néel points (T_N) are reported in Table III. These p values are higher than the standard free ion value of Pu³⁺ (~1.23 μ_B (16)). These differences are not well understood. The high values of θ_p compared to T_N suggest that strong interactions might exist between paramagnetic moments. The analysis of the paramagnetic region requires a more

FIG. 1. Thermal dependence of the reciprocal molar susceptibility of β -Pu₂O₃, Pu₂O₂S, and Pu₂O₂Se.

sophisticated treatment needing spectroscopic data on the ground level splitting, and susceptibility data at much higher temperatures.

Electrical Resistivity Results

 β -Pu₂O₃ was found to be an insulator with $\rho \sim 10^8 \Omega$ cm at room temperature, while both other compounds are semiconductors with high resistivity $\rho \sim 10^4 \Omega$ cm at room temperature. This emphasizes the evolution of an ionic compound (β -Pu₂O₃) to covalent compounds (Pu₂O₂S and Pu₂O₂Se).

Below 150 K the resistance of the samples became very high so that we were unable to make reliable measurements at low temperature. Neither time dependent nor temperature hystereses effects were observed.

From the plots of ρ versus 1/T, given in Fig. 2, activation energies W for electrical conduction were deduced according to the well-known relation $\ln \rho/\rho_0 = W/kT$. Then we calculated a gap $E_g = W/2$, assuming that these compounds are intrinsic semiconductors (see below).

IV. Discussion

Crystal Chemistry

The cell volumes V of these compounds are compared to those of the isostructural Nd₂O₂X compounds (X = O, S, Se). This comparison is justified by the fact that the crystal radii of Nd³⁺ and Pu³⁺ in trihalides are very close (18). In the same way, the cell volumes of A-Nd₂O₃ (76.32 Å³) (17) and β -Pu₂O₃ (76.15 Å³) are nearly equal. Thus we consider that the cell volume of the Nd₂O₂X compounds (3) corresponds to the cell volume of an hypothetical com-

TABLE III

Magnetic Data and Gaps of Pu_2O_2X Compounds

34
1.58
-320
0.54

FIG. 2. Plot of the electrical resistivity in log units versus reciprocal temperature for Pu_2O_2S and Pu_2O_2Se .

pound of Pu^{3+} with localized 5f electrons. We then calculate a coefficient δ measuring the relative difference between the cell volumes of the corresponding phases of Nd and Pu. Let us define δ as

$$\delta = 1 - \frac{V(\operatorname{Pu}_2\operatorname{O}_2 X)}{V(\operatorname{Nd}_2\operatorname{O}_2 X)} \quad \text{with } V = \frac{\sqrt{3}}{2} a^2 c.$$

The increase of δ along the series (see Table II) shows the progressive delocalization of Pu 5f electrons from β -Pu₂O₃ to Pu₂O₂Se.

The more 5f electrons delocalize with respect to the rare-earth-like situation, the less they shield the nuclear potential. Hence the 6s and 6p outer shells become more tightly bound and the Pu³⁺ crystal radius shrinks. Thus 5f "delocalization" increases from β -Pu₂O₃ to Pu₂O₂Se, while the Pu oxidation state and crystal structure remain the same.

Magnetic Properties

The shortest Pu-Pu distance d has been estimated in each compound (see Table II) using the atomic coordinates of the Nd atoms (z = 0.245) in $A-Nd_2O_3$ (17) for β -Pu₂O₃, and of the Ce atoms (z = 0.290) in Ce₂O₂S (10) for Pu₂O₂S and Pu₂O₂Se; d stands for the metal-metal spacing inside the Pu-O layers (see Fig. 3). It is nearly the same in the three compounds (~3.7 Å), and is shorter than the lattice parameter a, yet it is still longer than the critical distance (~3.4 Å) found in the Hill plot of Pu-based compounds (2). This agrees with the localized magnetism found in these compounds.

As the Pu–Pu distances are large enough to rule out a direct f-f exchange coupling, the 5f magnetic moments must be coupled via the nonmagnetic p orbitals of the oxygen and chalcogen ions, since here the conduction electrons cannot mediate these interactions. Since T_N increases from β -Pu₂O₃ (26 K) to Pu_2O_2S (29 K) then to Pu_2O_2Se (34 K), we conclude that the superexchange interactions are enhanced with decreasing electronegativity of the chalcogen X and increasing p radial extent. Hence the 5f contribution to bonding increases from β -Pu₂O₃ to Pu₂O₂Se. This conclusion from the magnetic data is in agreement with the abovementioned "delocalization" inferred from crystal chemistry. This effect is small, yet it shows the sensitivity of the 5f shell to the anionic ligand field in spite of the shielding of 6s and 6p outer shells.

FIG. 3. Layer structure of hexagonal Pu_2O_2X compounds (X = O, S, Se) projected on a {1, 0, 0} plane.

Low temperature specific heat measurements and neutron diffraction experiments on ²⁴²Pu-based compounds would certainly be necessary to give the Néel points with better accuracy and determine the magnetic structures, as was done for β -Pu₂O₃ (14).

It must be noted that the A-type sesquioxides Ce_2O_3 , Pr_2O_3 , and Nd_2O_3 do not order above 2 K (19); nor do Ce_2O_2S , Ce_2O_2Se , Pr_2O_2S , and Nd_2O_2S (3, 4). This is probably due to the smaller radial extent of the more internal 4f orbitals, which cannot overlap the neighboring p orbitals.

Electrical Properties

The hexagonal Nd_2O_2X compounds are known to be stoichometric compounds and to have a layered crystal structure (20). From a crystallographic standpoint, Nd_2O_2S is made from A-Nd₂O₃ by substituting sulfur sheets for oxygen sheets in between the (Nd-O) layers. Hence we have assumed that Pu₂O₂S and Pu₂O₂Se might be stoichiometric as is β -Pu₂O₃ (14, 15). Thus we shall consider here that the measured electrical conductivity of Pu₂O₂S and Pu₂O₂Se has an intrinsic origin. We shall discuss the electrical properties on the basis of a simple band model. This model must account for the fact that β -Pu₂O₃ was found to be an insulator while Pu₂O₂S and Pu_2O_2Se are semiconducting materials.

Let us consider the following three bands (see Fig. 4):

(1) the empty 6d-7s conduction states of Pu^{3+}

(2) the full 2p band arising from the 2p states of the oxygen atoms building up the (Pu-O) layers;

(3) the full np bands arising from the chalcogen np orbitals.

The occupied 5f states of Pu^{3+} are superimposed on the *p* valence bands.

Two cases may occur:

(1) If the 5f states lie below the np band

FIG. 4. A schematic band model of hexagonal Pu_2O_2X .

(3p for Pu₂O₂S and 4p for Pu₂O₂Se), then the measured gap E_g corresponds to an $np \rightarrow 6d-7s$ transition.

(2) If the 5f states lie above the np band then this gap corresponds to a $5f \rightarrow 6d-7s$ transition.

From β -Pu₂O₃ to Pu₂O₂Se, crystal structure remaining unchanged, the crystal field splitting of the 6*d* states must decrease, since the chalcogen electronegativity decreases and the cell volume increases. Thus the bottom of the 6*d* empty states rises from β -Pu₂O₃ to Pu₂O₂S and the conduction band narrows from Pu₂O₂S to Pu₂O₂Se.

The width of the 5f states is very slightly affected by this crystal field effect, yet 5fstates rise a little as covalency increases ("delocalization"). The 3p band in Pu_2O_2S and 4p band in Pu₂O₂Se are higher in energy than the 2p states of oxygen in β -Pu₂O₃, which lie below the 5f states (25). Hence we are led to think that the appearance of a semiconducting behavior in Pu₂O₂S is due to the 3p band which comes closer to the conduction states. Thus we think that E_{g} represents an $np \rightarrow 6d-7s$ transition. If it had been a $5f \rightarrow 6d-7s$ transition, as was the $4f \rightarrow 5d-6s$ transition in SmS, SmSe, SmTe (21, 22), we probably would have observed an increase of the gap. Hence in Pu_2O_2S and Pu_2O_2Se , the occupied 5f states must lie below the bottom of the chalcogen np band. They must also overlap this band to insure the superexchange coupling interactions.

V. Conclusion

We have shown that, in the isostructural compounds β -Pu₂O₃, Pu₂O₂S, and Pu₂O₂Se, the chemical bonding possesses a 5f-p covalent character which is enhanced from β -Pu₂O₃ to Pu₂O₂Se. This is due to the increase of the *p* radial extent of the chalcogen ions, and the decrease of electronegativity, from oxygen to selenium. This leads to

- (1) a shrinkage of the Pu^{3+} crystal radius,
- (2) an increase of the Néel temperature.

We have also pointed out, in Pu_2O_2S and Pu_2O_2Se , that the occupied 5*f* states must overlap the *bottom* of the chalcogen *np* band to account for the electrical properties of this series of compounds. Optical absorption (or reflection) spectra and UPSvalence band spectra would certainly help to improve the understanding of the electronic properties to these compounds.

Acknowledgment

The authors thank Professor Guillaumont for helpful discussions and advice.

References

- 1. D. DAMIEN AND C. H. DE NOVION, J. Nucl. Mater. 100, 167 (1981).
- 2. H. H. HILL, *in* "Plutonium 1970" (W. Miner, Ed.), p. 2, Metallurgical Society of AIME, New York (1970).
- 3. Y. ABBAS, Thèse Grenoble (1976).
- 4. J. ROSSAT-MIGNOD, Thèse Grenoble (1972).
- 5. J. M. COSTANTINI, CEA-R- 4056 (1980).
- J. FLAHAUT, M. GUITTARD, AND M. PATRIE, Bull. Soc. Chim. Fr., 180, p. 990 (1958).
- E. F. WESTRUM, JR., in "Progress in the Science and Technology of Rare Earths," Vol. 1, pp. 310– 350, Pergamon, New York (1964).
- D. E. WILLIAMS, U.S. Atomic Energy Commission Doc. I.S. 105 (1964).
- 9. E. R. GARDNER, T. L. MARKIN, AND R. S. STREET, J. Inorg. Nucl. Chem. 27, 541 (1965).
- 10. W. H. ZACHARIASEN, Acta Cryst. 2, 60 (1949).

- 11. M. ALLBUTT AND A. R. JUNKISON, AERE-R-5541 (1967).
- 12. L. N. MULAY, in "Magnetic Susceptibility," p. 1782, Wiley-Interscience, New York (1966).
- 13. L. F. BATES, in "Modern Magnetism," p. 133, Cambridge Univ. Press, London/New York (1951).
- 14. B. MC CART, G. H. LANDER, AND A. T. ALDRED, J. Chem. Phys. 74, 5263 (1981).
- 15. H. E. FLOTOW AND M. TETENBAUM, J. Chem. Phys. 74, 5269 (1981).
- D. J. LAM AND A. T. ALDRED, in "The Actinides, Electronic Structure and Related Properties," Vol. 1, Chap. 3, Academic Press, New York (1974).
- 17. P. ALDEBERT AND J. P. TRAVERSE, Mat. Res. Bull. 14, 303 (1979).

- C. KELLER, in "The Chemistry of the Transuranium Elements," Vol. 3, p. 125, Verlag Chemie, Weinheim (1971).
- 19. K. N. R. TAYLOR AND M. I. DARBY, in "Physics of Rare Earth Solids," Chapman and Hall, London (1972).
- 20. P. CARO, J. Less-Common Met. 16, 367 (1968).
- 21. C. M. VARMA, Rev. Mod. Phys. 48, 219 (1976).
- 22. A. JAYARAMAN et al., Phys. Rev. Lett. 25, 1430 (1970).
- 23. D. K. SMITH, U.S. Atomic Energy Document UCRL-7196 (1963).
- 24. A. BENACERRAF, M. GUITTARD, L. DOMANGE AND J. FLAHAUT, Bull. Soc. Chim. Fr. 303, p. 1920 (1959).
- 25. D. COURTEIX, J. CHAYROUSE, L. HEINTZ, AND R. BAPTIST, Solid State Comm. 39, 209 (1981).